Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 84(10-11): 2997-3017, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34850709

ABSTRACT

An attempt has been made to assess the water quality status of the lower stretch of river Ganga flowing through West Bengal for drinking using integrated techniques. For this study, 11 parameters at 10 locations from Beharampur to Diamond Harbour over nine years (2011-2019) were considered. The eastern stretch of Ganga showed a variation of Water Quality Index (WQI) from 55 to 416 and Synthetic Pollution Index (SPI) from 0.59 to 3.68 in nine years. The result was endorsed through a fair correlation between WQI and SPI (r2 > 0.95). The map interpolated through GIS revealed that the entire river stretch in the year 2011, 2012, and 2019 and location near to ocean during the entire period of nine years were severely polluted (WQI > 100 or SPI > 1). Turbidity and boron concentration mainly contribute to the high scores of indices. Further, the origin of these ions was estimated through multivariate statistical techniques. It was affirmed that the origin of boron is mainly attributed to seawater influx, that of fluoride to anthropogenic sources, and other parameters originated through geogenic as well as human activities. Based on the research, a few possible water treatment mechanisms are suggested to render the water fit for drinking.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Environmental Monitoring , Fluorides , Geographic Information Systems , Humans , India , Rivers , Water Pollutants, Chemical/analysis , Water Quality
2.
Water Sci Technol ; 74(3): 698-713, 2016.
Article in English | MEDLINE | ID: mdl-27508375

ABSTRACT

In the present work zinc oxide nanorods (ZNRs) have been synthesized to estimate its photocatalytic degradation potential on an industrially used diazo dye and optimization of the total treatment process has been designed. Response surface methodology (RSM) has been used to model the operational parameters for this photocatalytic degradation. The crystallite size (101 plane) of the synthesized ZNR has been found to be 20.99 nm having a band gap energy of 3.45 eV. At elevated pH, the rate of degradation of the photocatalyst was found to be higher than that of acidic pH. The independent variables of the model are time (9.6-122 min), pH (2-12.2), catalyst dose (0.2-0.4 g/L) and dye concentration (88-512 mg/L). It was seen that the degradation efficiency was significantly affected by the initial dye concentration and the pH, the optimal values of the parameters being a pH of 10.67, an initial concentration of 150 mg/L and ZnO dose of 0.37 g/L, the time taken being 88.52 min. The actual degradation efficiency of the dye reached 96.9% at optimized condition, which is quite close to the predicted value of 98.07%.


Subject(s)
Azo Compounds/chemistry , Coloring Agents/chemistry , Nanotubes/chemistry , Zinc Oxide/chemistry , Catalysis , Molecular Structure , Zinc Oxide/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...